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Abstract. We apply supersymmetric quantum mechanics (SUSY QM) to multidimensional
Schr̈odinger equations involving nonseparable potentials, which result in a system of coupled
differential equations, where instead of the conventional definition of a scalar superpotential we
introduce a superpotential matrix and succeed in applying SUSY QM to the coupled system. Finally,
we discuss the shape-invariance condition for the potential matrix of such a system.

Supersymmetric quantum mechanics (SUSY QM) has provided an insight into the analytic
solvability of the Schr̈odinger equation for certain classes of potentials. In this paper, we apply
SUSY QM to the few-body Schrödinger equation with noncentral interactions, which results
in a system of coupled differential equations.

It is well known that the Schrödinger equation for an arbitrary potential cannot be solved
analytically. However, for a few well known potentials (such as the one-dimensional infinite
square well, harmonic oscillator, Coulomb potential, etc) a complete analytic solution in a
closed form can be obtained. In some cases (such as a finite square well, spherically symmetric
three-dimensional infinite square well, etc) an analytic treatment is possible, but the energy
eigenvalue is given by a transcendental equation and is not in a closed analytic form. Among the
well known solvable potentials, the one-dimensional harmonic oscillator potential can easily
be treated by introducing creation and destruction operators, which effectively factorizes the
Hamiltonian. To gain insight into the analytical solvability, attempts were made to factorize
the Hamiltonian for other potentials also. Schrödinger [1] introduced the factorization method
to solve the hydrogen atom problem algebraically. This method was later generalized by
Infeld and Hull [2] for a number of solvable potentials. In SUSY QM [3] the Hamiltonian is
factorized by introducing a first-order differential operator (A) and its adjoint(A†) such that
(after shifting the energy scale so that the ground state is at zero energy)H = H1 = A†A.
Then a SUSY partner Hamiltonian can be defined asH2 = AA†. The partner Hamiltonian
(H2) has the same energy spectrum as the original(H1), except that the lowest energy state
of H1 is missing in the spectrum ofH2. Infeld and Hull and later Gendenshtein [4] showed
that if the partner potential(V2) has the same shape as the original potential(V1), then the
energy spectrum ofH1 can be obtained algebraically in closed form. Such a potential is called
a shape-invariant potential (SIP). It was later shown [5–8] that energy eigenfunctions and the
scattering matrix can also be obtained algebraically for SIPs. For the most commonly known
analytically solvable potentials listed in [9, 10], the shape invariance is obtained by a translation
of parameters. Later the class of SIPs was broadened by including scaling of parameters [11].
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Most of the applications of SUSY QM and investigations of the shape invariance in
SUSY QM have been done for the one-body Schrödinger equation for one-dimensional
potentials and also for spherically symmetric potentials in three dimensions. In the latter
case, the Schrödinger equation reduces to an ordinary differential equation in one variable
(on the half-line). Some attempts have been made to include non-central potentials for one-
body problems [12, 13]. However, the treatment includes only those non-central potentials for
which the Schr̈odinger equation separates into three ordinary differential equation in(r, θ, φ),
respectively. If the effective potentials in each of these variables, namelyV (r),V (θ) andV (φ)
are SIPs, then each of the equations can be solved algebraically.

Attempts have also been made to apply SUSY QM to the three-body problem in one
dimension [14] including a three-body force [15]. In one dimension, the relative motion of
the three-body problem is described by two scalar variables, which can be mapped into polar
coordinates(r, φ). The two- and three-body potentials [3, 16] were so chosen that the equations
in terms ofr andφ are separated and each one is an SIP.

The Schr̈odinger equation for a particle moving in a general noncentral potential which
is not separable in any particular coordinate system can be reduced to a system of coupled
differential equations (CDEs) in one radial variable(r) on the half-line, by expanding the
wavefunction in the complete set of spherical harmonics. In a similar fashion, the few-body
Schr̈odinger equation can also be reduced to a set of CDEs in the hyper-radial variable on
the half-line, by expanding the wavefunction in the complete set of hyperspherical harmonics
spanning the hyperangular space [17–19]. A finite set of CDEs is obtained by truncating the
expansion basis, which is then solved by numerical techniques. No attempt has been made
so far to formulate SUSY QM for such a system of CDE. The essential difficulty is in the
definition of a superpotential. In the case of a system ofN coupled differential equations, the
effective potential becomes anN×N matrix, and the eigenfunction becomes anN -component
column vector. In the case of an ordinary differential equation in one variable (sayx), the
superpotentialW(x) is defined as−ψ ′0(x)/ψ0(x) (in units such that ¯h/

√
2m = 1), where

ψ0(x) is the ground state wavefunction. In the case of a system ofN coupled differential
equations, this definition is not possible, sinceψ0 andψ ′0 are column vectors andW must be a
square matrix. In the following we introduce a modified definition of the superpotential matrix
through a matrix equation, and show that the SUSY QM can be applied to the system of CDEs
as well. Finally, we discuss the condition of shape invariance in this case.

The hyper-radial Schrödinger equation for a few-body system, after removal of the first
derivative, has the general form[

− h̄
2

2m

d2

dr2
− E

]
uk(r) +

N∑
k′=1

Vkk′(r) uk′(r) = 0 (k = 1, N) (1)

wherer is the hyper-radial variable,m is an effective mass andVkk′(r) is the coupling potential
matrix. Choosing the units such that ¯h/

√
2m=1, the set of CDEs, equation (1), can be written

in matrix form as{(
− d2

dr2
− E

)
[I ] + [V (r)]

}
|u(r)〉 = 0 (2)

where a symbol enclosed within a square bracket indicates anN×N square matrix and a
symbol enclosed in a ket notation represents anN -component column vector. Similarly〈u(r)|
represents a row vector, and [I ] is the unit matrix. We rename the potential matrix [V1] and
denote the energy and column vector for thenth excited state byE(1)n and

∣∣u(n)〉1, respectively.
As is usual with SUSY QM, we choose the energy scale such that the ground state energy in
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[V1] is zero(E(1)0 = 0):(
− d2

dr2
[I ] + [V1]

)∣∣u(0)〉1 = 0. (3)

In SUSY QM for a one-dimensional ordinary differential equation, one defines a superpotential
W(x) as−ψ ′0(x)/ψ0(x), whereψ0(x) is the ground state wavefunction. As mentioned earlier,
since

∣∣u(0)〉1 and
∣∣u(0) ′〉1 are column vectors, this definition is not tenable for equation (3).

Instead, we define a real-symmetric superpotential matrix [W(r)] through the matrix equation

[W ]
∣∣u(0)〉1 = −∣∣u(0) ′〉1 (4)

where a prime denotes a differential with respect to the argument. Differentiating equation (4)
with respect tor, we have

[W ]
∣∣u(0) ′〉1 + [W ′]

∣∣u(0)〉1 = −∣∣u(0) ′′〉1. (5)

Equations (3)–(5), suggest the relation

[V1] = [W 2
]− [W ′]. (6)

We next define the matrix operators:

[A] = d

dr
[I ] + [W ]

[
A†
] = − d

dr
[I ] + [W ]. (7)

Then for any column vector|ψ〉,[
A†
]
[A]|ψ〉 =

(
− d

dr
[I ] + [W ]

)
(|ψ ′〉 + [W ]|ψ〉)

= ([W 2
]− [W ′]

)|ψ〉 − |ψ ′′〉
=
(
− d2

dr2
[I ] + [V1]

)
|ψ〉

≡ [H1]|ψ〉 (8)

and we have

[H1] = [A†
]
[A]. (9)

This shows that the Hamiltonian [H1] is factorizable.
Next, we define

[H2] = [A]
[
A†
]

≡ − d2

dr2
[I ] + [V2]. (10)

Then using definition (7), we have

[V2] = [W 2
]

+ [W ′]. (11)

From equations (7) and (4), we have

[A]
∣∣u(0)〉1 = ∣∣u(0) ′〉1 + [W ]

∣∣u(0)〉1 = 0. (12)

Then, by equation (9)

[H1]
∣∣u(0)〉1 = 0 (13)

which is consistent with our choice of energy scale.
Next we consider the eigenvalue equation

[H1]
∣∣u(n)〉1 = E(1)n ∣∣u(n)〉1 = [A†

]
[A]

∣∣u(n)〉1. (14)
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Let
∣∣u(n)〉2 be the eigenstate of [H2], corresponding to the eigenvalueE(2)n :

[H2]
∣∣u(n)〉2 = E(2)n ∣∣u(n)〉2 = [A]

[
A†
]∣∣u(n)〉2. (15)

Now,

[H2][A]
∣∣u(n)〉1 = [A]

[
A†
]
[A]

∣∣u(n)〉1 = [A][H1]
∣∣u(n)〉1 = E(1)n [A]

∣∣u(n)〉1. (16)

Thus [A]
∣∣u(n)〉1 is an eigenfunction of [H2] corresponding to eigenvalueE(1)n .

Now [A]
∣∣u(0)〉1 vanishes (equation (12)) and being a trivial solution, cannot be the ground

state of [H2]. SinceE(1)n increase with increasingn, the ground state of [H2] will be proportional
to [A]|u(1)〉1 corresponding to the eigenvalueE(1)1 , which, by definition (15), is equal toE(2)0 ,
being the ground state of [H2].

In general, we have∣∣u(n)〉2 = Cn[A]
∣∣u(n+1)

〉
1

E(2)n = E(1)n+1 (n = 0, 1, 2, . . .)
(17)

whereCn is a normalization constant. Assuming
∣∣u(n)〉1 to be normalized, we have

2〈u(n)
∣∣u(n)〉2 = |Cn|2 1

〈
u(n+1)

∣∣[A†
]
[A]

∣∣u(n+1)
〉
1

= |Cn|2 E(1)n+1 (18)

by equation (9). Hence

Cn = 1√
E
(1)
n+1

. (19)

Thus [A] transforms an eigenket of [H1] into an eigenket of [H2], corresponding to one lower
excitation. In a similar fashion, we can show that∣∣u(n+1)

〉
1 =

1√
E
(2)
n

[
A†
]∣∣u(n)〉2. (20)

Thus
[
A†
]

transforms an eigenket of [H2] into an eigenket of [H1], corresponding to one
higher excitation. Hence the energy spectrum of [H2] is identical to that of [H1], except that
the ground level of [H1], namelyE(1)0 does not appear in the energy spectrum of [H2].

So far, we have succeeded in formulating SUSY QM for a system of CDEs in analogy
with the one-dimensional case. For a given Hamiltonian [H1] in the shifted energy scale (such
that its ground state is at zero energy), one can define a partner Hamiltonian [H2], which has
the same energy spectrum except for the absence of the ground state. Shifting the energy scale
once again, such that the ground state of [H2] is at zero energy, one can repeat the process
to define a third Hamiltonian [H3], which has the same energy spectrum as [H2], except for
the absence of the ground state of [H2]. Hence [H3] has the same energy spectrum as [H1],
except for the absence of the first two states. This process can be repeated until all the states
of [H1] are exhausted. Such a procedure is possible for any potential matrix [V1]. Now if
the partner potential [V2] has the same form as [V1], the potential [V1] will be called shape
invariant. In such a case one can show that the energy spectrum and the eigenvectors can be
obtained algebraically in closed forms.

The condition of shape invariance for a system of CDEs can be formulated more precisely
as follows. A potential matrix [V1] is shape invariant, if it has the same functional form and
matrix structure as that of the partner potential matrix [V2]. Since [V1(r)] and [V2(r)] are
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given by
[
W 2(r)

] − [W ′(r)] and
[
W 2(r)

]
+ [W ′(r)], respectively, one way of satisfying this

condition will be if [W(r)] has the form

[W(r)] = f (r)|a〉〈a| (21)

subject to the condition

〈a|a〉 = 1 (22)

where |a〉 is anN -component column vector with constant elementsa1, a2, . . . , aN . One
immediately sees that

[
W 2(r)

]
and [W ′(r)] and hence [V1(r)] and [V2(r)] have the same

matrix structure, namely|a〉〈a|. The potential matrices [V1(r)] and [V2(r)] are given by

[V1(r)] =
(
f 2(r)− f ′(r))|a〉〈a| ≡ g1(r)|a〉〈a|

[V2(r)] =
(
f 2(r) + f ′(r)

)|a〉〈a| ≡ g2(r)|a〉〈a|.
(23)

If g1(r) andg2(r) satisfy the shape-invariance condition in one dimension [3], [V1(r)] and
[V2(r)] are also shape-invariant potential matrices. Ifg1(r) is given in terms of a parameter
c1, theng2(r, c1) can be obtained according to equation (23). Now ifg2(r, c1) satisfy the
shape-invariance condition

g2(r, c1) = g1(r, c2) +R(c1) (24)

wherec2 is given in terms ofc1, then the shape-invariance condition in terms of the potential
matrices is

[V2(r, c1)] = [V1(r, c2)] + R(c1)|a〉〈a|. (25)

The Schr̈odinger equation satisfied by [V2(r, c1)] is(
− d2

dr2
[I ] − E(2)n [I ] + [V2(r, c1)]

)∣∣u(n)〉2 = 0. (26)

Substituting from equations (23) and (24), equation (26) becomes(
− d2

dr2
[I ] − E(2)n [I ] + g1(r, c2)|a〉〈a| +R(c1)|a〉〈a|

)∣∣u(n)〉2 = 0. (27)

Premultiplying with〈a| and using the condition (22), we obtain(
− d2

dr2
− (E(2)n − R(c1)

)
+ g1(r, c2)

)〈
a
∣∣u(n)〉2 = 0 (28)

which has the same form as the equation satisfied by [V1(r, c1)](
− d2

dr2
− E(1)n + g1(r, c1)

)〈
a
∣∣u(n)〉1 = 0. (29)

Since both equations (28) and (29) correspond to the same effective potentialg1(r), with
different parameters,E(1)n andE(2)n are simply related. Then following the procedure for the
one-dimensional shape invariance [3], one can calculate the energy spectrumE(1)n algebraically.
Starting from equation (28), one can again shift the energy scale so that the ground state of
equation (28) is at zero energy. Then follow the procedure indicated by equations (23) and
(24) to obtaing2(r, c2) asg1(r, c3) + R(c2), wherec3 is the new parameter obtained as the
same functional form ofc2 asc2 was ofc1. Repeating in this manner, one can show [3] that

E(1)n =
n∑
k=1

R(ck). (30)

Thus we can obtain the excitation energies of the original Hamiltonian algebraically.



2392 T K Das and B Chakrabarti

As a very simple example of this procedure, we take anN -component column vector for
|a〉

|a〉 =


a1

a2

...

aN

 (31)

wherea1, a2, . . . , aN are constants, withai proportional toi.
Normalization gives

〈a|a〉 =
N∑
i=1

|ai |2 = 1. (32)

Then the matrix part of [W(x)] is

[M]ij = aiaj = 6

N(N + 1)(2N + 1)
ij. (33)

Furthermore, choosingf (r) corresponding to the Eckart potential [3],

f (r) = −A coth(br) +
B

A
. (34)

With A as the first parameter(c1), we have

g1(r, c1 = A) = A(A− b) cosech2(br)− 2B coth(br) +
B2

A2
+A2. (35)

TakingN = 3, the three coupled differential equations have the matrix form

{
− d2

dr2
− E(1)n + 1

14g1(r, c1)

}
1
7g1(r, c1)

3
14g1(r, c1)

1
7g1(r, c1)

{
− d2

dr2
− E(1)n + 2

7g1(r, c1)

}
3
7g1(r, c1)

3
14g1(r, c1)

3
7g1(r, c1)

{
− d2

dr2
− E(1)n + 9

14g1(r, c1)

}



×


(
u
(n)
1 (r)

)
1(

u
(n)
1 (r)

)
2(

u
(n)
1 (r)

)
3

 = 0 (36)

where
(
u
(n)
1 (r)

)
i

is the ith component of the column vector|u(n)(r)〉1. By equation (23),
g2(r, c1) is obtained as

g2(r, c1 = A) = A(A + b) cosech2(br)− 2B coth(br) +
B2

A2
+A2

= g1(r, c2 = A + b) +R(c1 = A) (37)

where

R(c1 = A) =
{
B2

A2
− B2

(A + b)2

}
+
{
A2 − (A + b)2

}
. (38)
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Then repeating the procedure, we have

c1 = A
c2 = c1 + b = A + b

c3 = c2 + b = A + 2b

ck = A + (k − 1)b

(39)

R(ck) =
{
B2

c2
k

− B2

(ck + b)2

}
+
{
c2
k − (ck + b)2

}
. (40)

Then the excited energy of equation (36) is given by equations (30) and (40),

E(1)n =
n∑
k=1

R(ck) =
{
B2

A2
− B2

(A + nb)2

}
+
{
A2 − (A + nb)2

}
. (41)

Next we see that the eigenvectors can be obtained analytically. Suppose that thenth excited
state eigenfunction of equation (29) isψ(n)

1 (r):〈
a
∣∣u(n)(r)〉1 = ψ(n)

1 (r). (42)

The one-dimensional supersymmetric quantum mechanical procedure gives the wavefunction
ψ
(n)
1 (r) of equation (29) in an algebraic manner [3]. Then we can easily verify that(

u
(n)
1 (r)

)
i
= aiψ(n)

1 (r) (i = 1, N) (43)

satisfies equation (42). Hence all the components of
∣∣u(n)〉1 are obtained algebraically. Thus

both the eigenvalue and the eigenket (N -component column vector) are obtained algebraically.
This simple example has been chosen to illustrate the procedure. As in the one-dimensional

case, not all CDEs are algebraically solvable. The condition for solvability is the shape-
invariance conditions expressed in the paragraph preceding equation (21). The form of [W(r)]
given by equation (21) is justonesimple way of satisfying the shape-invariance condition.

We thus succeed in generalizing SUSY QM to a system ofN coupled differential equations
through the definition of a superpotential matrix. We have also shown that the shape-invariance
condition for the system of CDEs can be formulated, which leads to an algebraic solution. A
simple example illustrates the feasibility of satisfying this condition.
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